欢迎访问装备制造资讯网!

装备制造资讯网

您现在的位置是: 首页 > 制造技术 >详情

体硅微制造技术(日本学者利用MEMS悬臂梁制造等离子体近红外光谱仪)

发布时间:2024-06-18 04:42:26 制造技术 897次 作者:装备制造资讯网

近红外光谱可为物质提供特有的吸收光谱,从而使鉴别气体种类成为可能。因此,需要利用小型化光谱仪实现紧凑型气体传感器,从而监测生活空间的空气质量。

然而,传统近红外光谱仪均是利用光栅将入射光分散至不同波长,因此需要较长的光程,这便是传统光谱仪小型化的障碍。

体硅微制造技术(日本学者利用MEMS悬臂梁制造等离子体近红外光谱仪)

等离子体光电探测器则具有许多特性,如改善光电探测灵敏度、特定光探测的波长或偏振、硅材料的红外光探测能力等,因而得到了广泛的研究。而等离子体结构通常非常薄(薄至100nm),因此无需通过牺牲光电探测器的紧凑性来实现这些功能。

据麦姆斯咨询报道,近日,日本电气通信大学(UniversityofElectro-Communications)的OshitaMasaaki和KanTetsuo与其合作者共同在MEMS可形变悬臂梁上开发了一款基于金(Au)衍射光栅的等离子体光电探测器。

该研究主要针对MEMS可重构等离子体光电探测器。如图1(a)所示,在N型硅(n-Si)悬臂梁上制造等离子体金衍射光栅,并集成到MEMS角度扫描器上。当横磁波(TM)偏振近红外光以入射角θ射入光栅,满足表面等离子体共振(SPR)耦合条件(即入射角和波长)时,即可在光栅上产生SPR。

入射光则被光栅表面吸收成为SPR,并激发了金层中的自由电子。在金与n-Si之间形成肖特基势垒,当这些电子克服肖特基势垒时,SPR可以转换为光电流I(θ),从而实现了基于SPR的光电探测。

此外,由于悬臂梁可偏转,因此可以通过外部驱动力改变倾斜悬臂梁,引起光入射角θ的变化,从而重构SPR匹配条件和光电探测特性。同时采用两个锯齿形悬臂脚来减小刚度,以增加入射角的变化幅度。

综上所述,该器件采用n-Si体硅微加工技术制造。利用金衍射光栅激发表面等离子体(SP)。当光射入器件时,悬臂梁的机械振动会动态地改变光的入射角度,从而改变表面等离子体的耦合条件。耦合SPR后,光能就被转换成器件中的电流。

悬臂梁在-21?至21?的角度间扫描,通过分析电流随时间的变化,可实现对近红外光中光谱的数值反演。实现高度小型化的近红外光谱仪,就有望开发新型的小型物联网(IoT)传感器。

该研究已于2020年2月4日发表在ACSPhotonics上,题目为“ReconfigurableSurfacePlasmonResonancePhotodetectorwithaMEMSDeformableCantilever”,论文地址为:https://pubs.acs.org/doi/10.1021/acsphotonics.9b01510。

更多国内外新闻资讯,请关注公众号:MEMS