欢迎访问装备制造资讯网!

装备制造资讯网

您现在的位置是: 首页 > 制造技术 >详情

制造系统建模与优化技术(智能制造功能系统之制造过程控制优化)

发布时间:2024-07-20 00:21:11 制造技术 537次 作者:装备制造资讯网

后厂造_智能制造社区,未来任由我造

点击链接免费领取后厂造会员后,登陆查看更多智能制造行业资料、课程

制造系统建模与优化技术(智能制造功能系统之制造过程控制优化)

制造过程包括加工过程、装配过程、工厂运行等部分,制造过程控制优化是指将大数据与人工智能技术融入到制造过程中,使制造过程实现自感知、自决策、自执行,主要包括加工过程控制优化、装配过程控制优化、工厂运行控制优化等。

1)加工过程控制优化

制造装备是加工过程的基础。智能制造装备是指通过融入传感、人工智能等技术,使得装备能对本体和加工过程进行自感知,对与装备、加工状态、工件和环境有关的信息进行自分析,根据零件的设计要求与实时动态信息进行自决策,依据决策指令进行自执行,实现加工过程的“感知→分析→决策→执行与反馈”的大闭环,保证产品的高效、高品质及安全可靠加工,如图2所示。

图2加工过程控制优化

加工过程控制优化包括工况在线检测、工艺知识在线学习、制造过程自主决策与装备自律执行等关键功能。

(1)工况在线检测:在线检测零件加工过程中的切削力、夹持力,切削区的温度,刀具热变形、磨损、主轴振动等一系列物理量,以及刀具—工件—夹具之间热力行为产生的应力应变,为工艺知识在线学习与制造过程自主决策提供支撑。

(2)工艺知识在线学习:分析加工工况、界面耦合行为与加工质量/效率之间的映射关系,建立描述工况、耦合行为和加工质量/效率映射关系的知识模板,通过工艺知识的自主学习理论,实现基于模板的知识积累和工艺模型的自适应进化,为制造过程自主决策提供支撑。

(3)制造过程自主决策:将工艺知识融入装备控制系统决策单元,根据在线检测识别加工状态,由工艺知识对参数进行在线优化并驱动生成制造过程控制决策指令。

(4)装备自律执行:智能装备的控制系统能根据专家系统的决策指令对主轴转速及进给速度等工艺参数进行实时调控,使装备工作在最佳状态。

2)装配过程控制优化

装配过程控制优化是指通过大数据、人工智能等方法,结合智能机器人、人机协同等新兴技术,实现装配过程的自动化与智能化,从而提升装配系统运作效率,为企业创造新的价值。

装配过程控制优化的主要核心技术包括:智能装配规划系统、装配机器人、人机协同技术等。

(1)智能装配规划系统:是智能规划等理论方法和技术与装配规划问题相结合产生的一项综合技术,不仅能够提供一系列符合要求的装配工艺,同时能够按照可装配性、可维护性、可用的装配资源以及整个装配成本的高低要求,对装配方案的优劣进行分析。智能装配规划通过产品的CAD模型,利用计算机、AR/VR等技术,创建虚拟环境,以便对产品的装配过程进行模拟与分析,在产品的研制过程中及时对装配方案进行快速评价,预估方案的装配性能,及早发现潜在的装配序列冲突与缺陷,并将这些装配信息反馈给设计人员,从而及时修改,不断优化产品装配过程。

(2)装配机器人:是实现智能装配的重要保障,是实现柔性自动化装配系统的核心设备,由机器人操作机、控制器、末端执行器和传感系统组成。常用的装配机器人主要有可编程通用装配操作手(programmableuniversalmanipulatorforassembly)即PUMA机器人和平面双关节型机器人(selectivecomplianceassemblyrobotarm)即SCARA机器人两种类型。与一般工业机器人相比,装配机器人具有精度高、柔顺性好、工作范围小、能与其他系统配套使用等特点,可以有效降低人工装配造成的不确定性影响,有助于提升产品一致性,大幅提高装配效率。

(3)人机协同技术:装配过程中,存在大量复杂的装配工艺,智能机器人无法独立完成,需要通过人机协同技术,在操作员的远程遥控或协同交互下完成。人机协同技术关注于通过人机交互实现人类智慧与人工智能的结合,是混合智能以及人脑机理揭示相关研究的高级应用,也是智能装配发展的必然趋势。此外,人机协同的过程,也是机器模仿和学习人类装配的过程,通过使用人类智慧形成的数据训练机器实现既定的目标,从而有效地提高装配的智能化程度。除此之外,人机协同技术还可以避免装配人员直接暴露在危险性较高的生产环境(如辐射、高温高湿等)。

3)工厂运行控制优化

工厂运行控制优化是指利用智能传感、大数据、人工智能等技术,实现工厂运行过程的自动化和智能化,其建设的基本目标是实现生产资源的最优配置、生产任务的实时调度、生产过程的精细管理等。其主要功能架构包括:智能设备层、智能传感层、智能执行层、智能决策层,如图3所示。智能设备层主要包括各种类型的智能制造和辅助装备,如智能机床、智能机器人、AGV/RGV、自动检测设备等;智能传感层主要实现工厂各种运行数据的采集和指令的下达,包括工厂内有限/无线网络、各种采集传感器及系统、智能产线分布式控制系统等;智能执行层主要包括三维虚拟车间建模与仿真、智能工艺规划、智能调度、制造执行系统等功能和模块;智能决策层主要包括大数据分析、人工智能方法等决策分析平台。

图3工厂运行控制优化

工厂运行控制优化的主要关键技术包括制造系统的适应性技术、智能动态调度技术等。

(1)制造系统的适应性技术:制造企业面临的环境越来越复杂,比如产品品种与批量的多样性、设计结果频繁变更、需求波动大、供应链合作伙伴经常变化等等,这些因素会对制造成本和效率造成很不利的影响。智能工厂必须具备通过快速的结构调整和资源重组,以及柔性工艺、混流生产规划与控制、动态计划与调度等途径来主动适应这种变化的能力,因此,适应性是制造工厂智能特征的重要体现。

(2)智能动态调度技术:车间调度作为智能生产的核心之一,是对将要进入加工的零件在工艺、资源与环境约束下进行调度优化,是生产准备和具体实施的纽带。然而,实际车间生产过程是一个永恒的动态过程,不断会发生各类动态事件,如订单数量/优先级变化、工艺变化、资源变化(如机器维护/故障)等。动态事件的发生会导致生产过程不同程度的瘫痪,极大地影响着生产效率。因此,如何对车间动态事件进行快速准确处理,保证调度计划的平稳执行,是提升生产效率的关键。车间动态调度是指在动态事件发生时,充分考虑已有调度计划以及系统当前的资源与环境状态,及时优化并给出合理的新调度计划,以保证生产的高效运行。由于动态调度在静态调度已有特性(如非线性、多目标、多约束、解空间复杂等)的基础上,增加了动态随机性、不确定性等,导致建模和优化更为困难,是典型的NP-hard问题。当前,主要动态调度方法有两种,即重调度和逆调度。重调度是根据动态事件修改已有调度计划;逆调度是通过调整可控参数和资源来处理动态事件。两者均是以已有调度计划为基础,重调度修改计划不修改参数,逆调度修改参数不修改计划,各有优缺点。